Rocking Foundations for Bridges

Bruce Kutter
Sashi Kunnath
Lijun Deng
Jacqueline Allmond

This project was made possible with support from:

Acknowledgements

- PEER support for shallow foundation research for several years (mostly for building foundations) (Hutchinson, Gajan, Stewart, Martin, Moore, many students)
- Current support from Caltrans (Desalvatore, McBride, Shantz, and Khojasteh, Mahan & contract 59A0575).
- Caltrans project (Mahin, Jeremic, Alameddine and Whitten)
- NEES@UCDavis, CGM staff, J. Ugalde, T. Algie of Univ. of Auckland, NZ.
- New project of rocking foundations for bridges) funded by PEER as of October 1.

Work for Caltrans: Idealized failure mechanisms

(a) fixed-fixed (b) fixed-hinged (c) fixed-rocking; (d) hinged-rocking

Column is protected by rocking isolation in case (d)

Caltrans SDC: "foundation components shall be designed to remain essentially elastic when resisting the plastic hinging moments".

Inspectable, controllable with proper reinforcing, but catastrophic results if ductility capacity is exceeded.

Definitions and basic concepts

- There is a critical (minimum) contact length, Lc, required to support the vertical load, V.
- Moment capacity (from equilibrium) is

$$M_{o,ult} = V \frac{L}{2} \left[1 - \frac{L_c}{L} \right]$$

$$T \quad David Mar$$

- $L_c/L \ll 1$ for typical bridge foundations.
- $M_{o,ult}$ is insensitive to L_c/L

Base shaking tests

Dynamic base-shaking and slow cyclic loading tests on the 9 m radius NEES geotechnical centrifuge at UC Davis.

Slow cyclic loading tests

Ugalde movie – L/Lc ~ 30 to 50

Moment-rotation-settlement behavior of rocking foundation from slow cyclic tests

Bridge System Concepts

Bridge system test configuration

LJD02 15 event: Gazli 2.0

Critical plots of LJD02_15 event: Gazli 2.0

Learned from experiments

- Systems with small footings may perform better than systems with large footings
 - drift, ductility demand on columns
- Rocking foundations provide
 - Self-centering tendency
 - Non-degrading, well defined moment capacity
 - Isolation mechanism
 - Energy dissipation
- Difficult aspect of the problem: How to evaluate settlement (or uplift) associated with rocking.
 - But, magnitude of settlements is not unreasonable.

Draft Design Procedure for Bridges with Rocking Foundations

- 1. Determine design ground motions, site conditions, design spectra.
- 2. Determine <u>superstructure information</u>, geometry, dead loads and live loads, abutment constraints.
- 3. Estimate distribution of dead load on footings.
- 4. Size footings based on settlement considerations. L/ Lc > ~10 and "yield acceleration" large enough to limit drift to acceptable levels.
- 5. Preliminary column design: sized to make their moment capacity greater than the footing moment capacity.

Draft Design Procedure for Bridges with Rocking Foundations

- 6. Confirm that drift and settlement do not violate serviceability limits in Functional Evaluation Earthquake. If drift is too large increase "yield acceleration"
- 7. No collapse in Maximum Considered Earthquake.
- 8. Check distribution of dead load on the footings (assumption in step 3).
- 9. Final design of columns

Hurdles to implementation of Rocking Foundations for Bridges

 Overcome excessive fear of tip over of rocking systems

A hinge is a hinge is a hinge (Mark Moore)

Hurdles to implementation of Rocking Foundations for Bridges

Settlement assessment

Hurdles to implementation of Rocking Foundations for Bridges

- Develop draft design procedure
 - Work with Caltrans engineers to address concerns and make it workable and understandable
- Revise seismic design guidelines
- Determine limits of applicability (liquefaction, water table, soft ground)
 - ground improvement
 - may extend limits

Thanks again to PEER, Caltrans, and NSF